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A novel shape-feature-based computational method is described and used to rapidly filter
compound libraries. The computational model, built using three-dimensional conformations of
active and inactive molecules, consists of a collection of whole molecule shapes and chemical
feature positions that are ranked according to their correlation with activity. A small ensemble
of these shapes and features is used to filter virtual compound libraries. The method is applied
to two thrombin data sets and is shown to be efficient in identifying novel scaffolds with
enhanced hit rates.

Introduction
Lead Evolution: A Definition. Analysis of (pre)-

clinical drug development candidates has shown that
problems with pharmacokinetics and safety are respon-
sible for nearly 50% of all failures.1 To some extent,
these problems are coupled to the chemical class of the
candidate. To increase the chances for clinical success
and to navigate around chemical space patented by
competitors, developing backup compounds based on
chemically diverse series is a necessary step in the drug
discovery pathway. This process of converting knowl-
edge of one active chemical class into the discovery of a
new class of compounds, while maintaining the desired
activity, is what we refer to as lead evolution.

Previous Lead Evolution Strategies. Screening
large chemically diverse corporate or combinatorial
libraries to identify new chemical classes is a widely
used strategy. This approach, typically carried out at
an early stage of a project, has proven to be successful
but costly. A more cost-effective means to identifying a
new chemical class would involve the integration of
computational and experimental methods to use infor-
mation about the biological target and its known
ligands. Previous computational methods that have
been successfully applied toward lead evolution are
discussed below.

(A) Methods Based on Receptor or Ligand Struc-
ture. In cases where a high-resolution three-dimen-
sional (3D) structure of the biological target is available,
3D database docking and structure-based design have
been applied for lead evolution.2-4 An obvious limitation
to this approach is that structures of a majority of
pharmacologically interesting receptors are unknown.
In cases where the receptor structure is unknown,
structural features that contribute to biological activity
must be inferred from the ligands. To that effect, ligand-
based pharmacophore methods have been applied in
conjunction with database searching to demonstrate
lead evolution.5-8

(B) Methods Based on Similarity Searching. The
hypothesis for similarity searching in chemical space

is the similarity property principle, which states that
compounds that are chemically alike in some way will
have similar biological activities.9 Therefore, given a
target molecule, one that has been shown to exhibit
some biological activity, a similarity search of a chemical
database aids the procedure of finding a new lead.
Searching chemical databases using this method can be
very fast and therefore used to quickly scan through
large collections of molecules. However, these methods
typically rely on two-dimensional (2D) chemical con-
nectivity or other 2D descriptors such as substructural
fragment information. The emphasis of these methods
on bond connectivity can be a limitation for lead
evolution as illustrated by the study of Zheng and co-
workers10 who applied a Focus-2D method to search a
combinatorial N-substituted glycine virtual library.
Some successes have been reported with 3D database
searches using a single 3D structure of the ligand as a
query.11-18

Shape-Based Method: A New Approach. In this
paper, we describe a novel ligand-based computational
method for rapid lead evolution that is independent of
chemical class and is an effective discriminator of
activity. It involves the generation of ensembles of 3D
shape-based descriptors. A collection, referred to here
as the ensemble model, of these shape-based descriptors
is constructed from a training set of compounds of
known activity. This ensemble is used to filter source
pools of compounds in new chemical classes resulting
in compound sets enriched in activity against the target.
To further elucidate the robustness of this method, its
ability to identify novel active scaffolds relative to a
commonly used 2D similarity searching technique is
presented.

Several implementations of molecular shape-based
descriptors, as well as excluded volume models, have
been presented in the literature.19-22 In general, these
approaches involve either creating a “shrink wrap”
around a pharmacophore description of a conformer to
a molecule21 or using an ensemble of 3D shapes based
on pseudo-receptors22 or comparing shapes generated
from fragments within a molecule.20 As compared to the
published shape-based studies, the new method uses an
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all atom representation for each of the training set
compound conformers. Like the published methods, the
current approach is demonstrated in the context of
database searching. However, the speed of this method
allows for searching large virtual libraries holding
hundreds of thousands of compounds.

Research Strategy

Retrospective Analysis. One of the main advan-
tages of the present shape-based method is that it can
be applied to problems where little prior information
about the target exists. To demonstrate the effectiveness
and advantages of the new technique, it is necessary to
apply it to problems that are widely known and that
are rich in data. This proof-of-concept study on known
data is referred to as retrospective analysis.

The present study describes two retrospective analy-
ses of the shape-based technique on a well-characterized
problem: the search for novel thrombin inhibitors. A
shape-based ensemble model is built using data gleaned
from literature. The model is applied first to a data-
mining problem on a subset of the MDDR collection23

and second to a more challenging and realistic (though
still retrospective) problem of searching an in-house
library that was synthesized in the course of internal
research on thrombin inhibitors.

Thrombin Data Set: Literature. Thrombin inhibi-
tors have a therapeutic potential for the treatment and
prevention of thrombosis-related disorders.24 The struc-
ture and activity of several potent thrombin inhibitors

are published and provide a basis for a good benchmark
data set.25,26 An ensemble model was generated using
a training set active and inactive molecules where the
active molecules were taken from literature.

Thrombin Data Set: Synthetic Library. A library
of 634 compounds was synthesized in the course of an
internal research for thrombin inhibitors. The com-
pounds synthesized were based on five different chem-
istries of which four are shown in Figure 1.27 The
chemistries were chosen based on the following crite-
ria: (i) a dissimilar display of the key positively charged
feature within the reaction products, (ii) the scope of
the reaction as defined from synthetic development
knowledge,28 (iii) the commercial availability of the
reactants as given in the ACD,29 (iv) the ability to isolate
products from their crude reaction mixtures despite the
variability in reaction yields, and (v) the ability to
achieve rapid synthetic access. To address the last
criterion, these chemistries were either multicomponent
(Grigg and amino-ketone) or multistep, one pot (Bis-
anilide and triazine) reaction sequences.

For each reaction sequence represented in Figure 1,
one of the reaction components contained the positively
charged key feature. Specifically, component A of the
triazine reaction and component C of the amino-ketone
reaction contain 3- and 4-aminobenzamidine. Compo-
nent C of the Grigg reaction contains the amino-
benzamidines and guanidine-containing amines, and
component C of the Bis-anilide reaction consists only
of amines with a guanidine substituent.

Figure 1. Reaction sequences for combinatorial library syntheses. The letter identifiers refer to the components described in the
General Synthetic Procedures section. The number of compounds synthesized and the number of actives are indicated below each
scaffold.
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Computational Methods
Model Generation and Shape-Feature Method.

The computational model consists of a collection of
shape-feature descriptors. Each descriptor combines a
3D shape with a single chemical feature type located
at a particular position within the shape. The chemical
features selected reflect important ligand-receptor
interactions and include hydrogen bond donors and
acceptors, positive and negative charges, aromatic rings,
and hydrophobes. A concise description of the method
is given below while the algorithmic details are de-
scribed elsewhere.30

Generation and cross-validation of the computational
model is a four step process and is schematically
depicted in Figure 2. First, a conformational model is
generated for all active ligands using the in-house
program CONAN.31-33 For the active molecules, each
conformer is placed onto a 3D grid and aligned with a
user-defined key feature in combination with the prin-
ciple moments. In this study, the defined key feature is
a positive charge present in each of the thrombin
inhibitors. The grid points that fall within the van der
Waals surface of the molecule in a particular conforma-
tion define the molecular shape. Henceforth, the word
shape refers to this key feature-centered molecular
shape. Closely related shapes are eliminated during this
process based on a user-defined volume Tanimoto index
for comparison. The collection of all resulting 3D shapes
is called the shape catalog. The combination of a shape,
a feature type, and a feature position is defined as a
shape-feature descriptor, and the combinations of all
feature types, in all grid positions, of all shapes in the
shape catalog are defined as the descriptor space.

The second step is to create a signature for every
molecule in the training set. This is done by generating
a conformational model for the molecule and then
representing the presence or absence of all the descrip-
tors that can be matched by a molecule’s conformers.
This binary description of all conformations of a mol-
ecule in terms of the descriptor space is defined as its
signature.

In the third step, a subset of these descriptors is
selected that is best able to differentiate between active
and inactive molecules. This is done by ranking each
shape-feature descriptor by its calculated information
content.8,34,35 The descriptors with the highest informa-

tion content are retained and used together as an
ensemble model. Finally, in the fourth step, a cross-
validation is carried out in order to characterize the
predictive value of the model.

Library Filtering. The ensemble model is developed
based on information from the biological activity of the
training set molecules. Because the ensemble model no
longer retains chemical connectivity information, it can
be used to search for new chemical classes with similar
biological activity as the training set. To that end,
virtual libraries are filtered by first generating the
signature of the compounds using the previously defined
shape catalog.36 Next, the virtual compounds are given
a score based on the number of shape-feature descrip-
tors that are matched in the ensemble model. Molecules
from the virtual libraries whose scores are greater than
a defined threshold are proposed to have activity similar
to the training set.

Comparison to Similarity Search. Two-dimen-
sional similarity searches were carried out, using the
training set actives, to compare with the performance
of the shape-feature method. Queries were calculated
for the actives with MACCS keys37 as implemented
within MOE.38 The query set consisted of the most
active compound and the four remaining most structur-
ally diverse active molecules. All source pool compounds
were then ranked based on similarity to each of these
five query molecules. An equal number of molecules
were retained for each query molecule. This procedure
was repeated three times, each time starting with a
different active molecule from the training data set and
the four most structurally diverse molecules (from this
new starting molecule) as the remainder of the five
query molecules.

Results and Discussion
Ensemble Model Building. A thrombin data set

used for building the ensemble model consisted of 38
thrombin inhibitors taken from the literature25,26,39 and
2418 chemically diverse inactive compounds. The aver-
age Daylight40 pairwise Tanimoto similarity of the 38
literature actives is calculated to be 0.32. These Daylight
fingerprints are created with the default parameters.
These default parameters allow for a maximum (cre-
ation) fingerprint size of 2048 bits and repeatedly fold
the fingerprint to a minimum size of 64 bits. The
calculated similarity of 0.32 suggests that, as a collec-
tion, the active molecules are topologically different from
each other. The measured activities of these inhibitors
range in their Ki values from micromolar to subnano-
molar. The set of 2418 inactives came from a chemically
diverse internal screening library.

A shape catalog containing 327 shapes was created
from conformers of the active compounds. The shape
catalog was generated using a grid with 31.5 Å × 24 Å
× 18 Å dimensions, a grid spacing of 1.5 Å, and a
positive charge as the key feature. Signatures were then
generated for each of the training set compounds using
the shape catalog and the defined features (acceptors,
donors, positive and negative charge, aromatic rings,
and hydrophobes). The combination of shapes, features,
and grid size defines the descriptor space and yields a
signature of ∼7.9 million bits.

An ensemble of the top 500 shape-feature descriptors
(containing 50 unique shapes), as ranked by information

Figure 2. Flowchart of the computational model building
process.
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content, was selected using this training set. The cross-
validated ensemble performance plot is shown in Figure
3. From this plot, a threshold for the computational
filter was set to 175 based on retaining the maximum
number of active molecules and the minimum number
of inactive molecules. Compounds that matched any 175
or more descriptors in the 500 shape-feature ensemble
model were considered to have passed the selection
filter. This threshold filter was applied when selecting
compounds from the two libraries discussed below.

MDDR Database Filtering. To evaluate the per-
formance of our ensemble model as a database filtering
tool, we used it to filter the MDDR database,23 which
holds over 100 000 druglike compounds. Because our
model requires positively charged molecules, it was
necessary to prefilter the MDDR for molecules having
at least one positively charged group. Applying this
prefilter yielded a set of 35 462 molecules, and this
subset of the MDDR is defined as the source pool for
the search. Within this subset, matching the key words
“thrombin inhibitor” identified thrombin actives. After
duplicates from the training set were removed, 540
actives were found in this set. The average pairwise
Tanimoto similarity among these actives was 0.33 as
calculated from their Daylight fingerprints. Addition-
ally, the average pairwise similarity of the MDDR
actives to the literature actives was calculated to be
0.31. On the basis of these and additional similarity
comparisons (see Table 1), we infer that the two sets
(literature and MDDR actives) differ substantially.

When the shape-feature ensemble filter was applied,
507 compounds out of the 35 462 molecules were
selected. Of the 507 compounds that passed the selection
criterion, 181 were thrombin actives (33%) and 326 were
not listed as thrombin active molecules. This resulted
in an enrichment ratio (defined as a footnote in Table
2) of 23 (see Table 2).

The MACCS keys-based 2D similarity search was
applied to the same source pool by retaining the top 100
molecules for each query molecule, for a total of 500
molecules (see Table 2). This method selected 67 out of
the 540 thrombin actives (12% of the actives). The
average enrichment was 8.6, which is 2.7 times smaller
than that obtained from the shape-feature method.

Synthetic Library Filtering. The shape-feature
ensemble model was evaluated as a tool for lead
evolution by searching the set of compounds from a
synthesized collection around five separate templates
(see Figure 1). Overall, this synthetic library consisted
of 634 compounds. Sixty-four of those molecules, on
three of the five templates, were identified as active
thrombin inhibitors (where 50% inhibition or greater
at 25 µM inhibitor concentration was considered active).

Filtering the synthetic library using the shape-
feature ensemble model resulted in the selection of 109
compounds out of the 634 total (Table 2). This selection
process recovered 15 out of the 64 actives (23%) result-
ing in a library enrichment ratio of 1.4. Two of the three
possible active templates, compounds within the amino-
ketone and Grigg templates, were represented among
the set of molecules that passed the filter, and an
example from each template is represented in Figure
4. Note that the average pairwise Tanimoto similarity
of Daylight fingerprints between the selected active
compounds from the synthetic library and the training
set actives was only 0.24. It is very encouraging,
however, that the shape-feature method is predictive
even when the literature set and source pool actives are
topologically very dissimilar. Of particular interest is
the fact that the source pool of synthetic actives
uniformly displays weak thrombin inhibition, with IC50
values in the micromolar range, unlike that of the
MDDR actives, which display potent thrombin inhibi-
tion.

Results from the search using the MACCS key
similarity method retaining the top 20 molecules for
each query molecule, for a total of 100 molecules, are
also summarized in Table 2. An enrichment ratio of 0.6
was obtained by the similarity method as compared to
1.4 for the shape-feature method. Considering that a
random selection should on average result in an enrich-

Figure 3. Cross validation and ensemble performance plot.
The initial set of thrombin data is split into active and inactive
subsets. Each subset is further split with 75% of the com-
pounds used for training and 25% reserved as the test set. The
active training set is represented with a red line, and the active
test set is represented with a magenta line. The inactive
training set is represented in green with the inactive test set
in cyan (note that the two lines coincide and appear as one).
The performance of the top 500 models (individual shape-
feature descriptors) is evaluated in the following way. The
x-axis indicates the minimum number of models matched by
a given set of compounds. The y-axis then shows the fraction
of compounds for a given set that match that threshold. For
example, approximately 45% of the test set actives and 2% of
the test set inactives match at least 100 of the top 500 models.
For this study, the cutoff was set at 175 models, as indicated
by the vertical blue line. Applying this cutoff to the database
searches, a compound that matches any 175 out of the 500
models in the ensemble is considered to have passed the
selection filter. Ten trials of cross validation experiments were
done, and the error bars are shown. For each experiment, the
training (75%) and test (25%) sets were chosen randomly.

Table 1. Average Pairwise Tanimoto Similarity Comparisons
of Active Molecules in the MDDR to Those in the Literature
Set

MDDR actives

percent with
similarity

< 0.75a

percent with
similarity

< 0.50a

source poolb 82 33
shape-feature filterc 80 21
MACSS keys similarity filterd 76 0

a Similarity comparison to all 38 literature active molecules.
b The MDDR source pool contains 540 actives. c A total of 181
actives were selected by the shape-feature filtering. d A total of
67 actives were filtered by the MACCS key similarity search
method.
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ment of 1.0, this study emphasizes the difficulties of
using a topological descriptor to search novel chemical
space.

Comparison of the Shape Catalog with Inhibitor
Cocrystal Structures. We investigated the relation-
ship between shapes in the shape catalog and the
shapes derived from X-ray ligands. This comparison is
interesting since no knowledge of the ligand cocrystal
structure was included in the construction of the shape
catalog. In Figure 5, the cocrystal ligand structures for
NAPAP and argatroban, crystallized with thrombin,41

are displayed within two informative shapes from the
ensemble model. The two shapes were picked after
visual inspection of the top-ranking descriptors and do
not necessarily present the most informative ones.
Overall, the cocrystal conformer shape and the two

informative shapes are in qualitative agreement. The
chemical features are also well-placed to pick up the
hydrophobic feature in NAPAP and aromatic ring for
argatroban.

Conclusions
In this paper, we have demonstrated the use of a

novel shape-feature-based searching method, which
because of its abstraction from chemical connectivity
and 3D nature is useful for lead evolution. Searches of
the MDDR and a synthetic library show that the method
can detect thrombin actives with reasonable enrichment
even when the training set is chemically dissimilar to
the library that is searched. When compared with the
performance of a more conventional 2D similarity
searching method, the shape-feature-based method
performs better in terms of enrichment for activity and
ability to select novel scaffolds. Interestingly, there
seems to be a qualitative agreement between some of
the shapes generated and the shapes of experimentally
observed inhibitors in complex with thrombin.

Experimental Section
Abbreviations used as follows: DME, ethylene glycol di-

methyl ether; MeCN, acetonitrile; DIEA, N,N-di-isopropylethyl-
amine; DMF, N,N-dimethylformamide; DMSO, dimethyl sul-
foxide; NAPAP, N-R-((2-naphthylsulfinyl)glycyl)-DL-p-amidi-
nophenylalanylpiperidine.

Combinatorial Synthesis. Reactions were conducted in
a polystyrene 96 well reactor with delivery of components and
accessory reagents by a Tecan liquid-handling system. Tech-
nology for execution of the solution phase chemistries has been
described in a preliminary account of the syntheses of these
libraries.42 After the reaction sequence was completed, volatiles
were removed with a Genevac HT-12 and the residues were
dissolved into 200 µL of DMSO. Purification was then effected
on a YMC-Pack ODS-A column with acetonitrile-water gra-
dients buffered with 0.03% trifluoroacetic acid (TFA). Collec-
tion was effected by mass-triggering43 using a PE-SIEX
API150EX single quadrupole mass spectrometer with a Gilson
204 fraction collector into microtiter plates to maintain a
collection-well to synthesis-well correspondence. Orthogonal
detection allowed for “on-the-fly” quantification of the collected
material after construction of the appropriate calibration
curves.44

After the solvent was removed, the residues were diluted
to 10 mM with DMSO with a Tecan RSP 150/8 Genesis liquid
handler to provide master plates that were reformatted into
daughter plates for biological screening. Database integration
of synthetic and analytical data allowed for sample tracking
and volume calculations for all liquid-handling steps.45

Grigg Reaction.46 To a mixture of 40 µL of 0.4 M aldehyde
(component A), 40 µL of 0.4 M N-substituted maleimide
(component B), and 160 µL of 0.1 M amino-ester (component
C), 16 µL of 2 M triethylamine followed by 20 µL of 0.4 M acetic
acid was added. All components and accessory reagent solu-

Table 2. Summary of Database (MDDR and Combinatorial Library) Searches

MDDR combinatorial library

shape-feature
filtering

MACCS key
similarity searching

shape-feature
filtering

MACCS key
similarity searching

no. of molecules selected 507 500 109 101
no. of actives selected 181 67 15 6
percent of actives selected 33 12 23 9
enrichment ratioa 23 8.6 1.4 0.6
no. of active scaffolds selectedb 2 1
a The enrichment ratio is calculated as the ratio between the fraction of actives in the selected set and the fraction of actives in the

source pool. For example, in the MDDR set, the fraction of actives in the source pool is (540/35 462) ) 0.0152. While the fraction of actives
in the selected set for the shape-feature method is (181/507) ) 0.357. On the basis of the above definition, the enrichment ratio for the
shape-feature method is (0.357/0.0152) ) 23. b The combinatorial library consists of five different scaffolds. The number of scaffolds
represented in the selected set of active molecules is indicated. The number of scaffolds was not determined for the MDDR searches.

Figure 4. Examples of synthetic actives (human thrombin
percent inhibition at 25 µM inhibitor concentration).

Figure 5. Fit of the cocrystal ligand conformations of NAPAP
(left) and argatroban (right) in two of the 500 shape-feature
models used in the ensemble. The key feature (positive charge)
is depicted as a blue sphere for both structures. A hydrophobic
feature is shown as the brown sphere for NAPAP while the
aromatic centroid feature is shown as the gold sphere for
argatroban.
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tions were prepared in DMF with the exception of some amino-
esters where ethanol was the more appropriate solvent for
dissolution. The resulting mixture was agitated for 5 h at 60
°C. The crude reaction mixtures were then subjected to high-
performance liquid chromatography mass spectrometry (HPLC-
MS) purification.

Amino-Ketone Reaction.47 To a mixture of 20 µL of 1.0
M aldehyde (component A) and 24 µL of 1.0 M silyloxyether
(component B), 20 µL of an approximately 1 M solution of the
amino-benzamidine (component C) was added. Component
solutions were prepared in acetonitrile. To the component
mixture, 20 µL of 0.3 M Yb(OTf)3 in MeCN was added. After
the mixture was agitated for 16 h at room temperature, the
crude reaction mixture was subjected to HPLC-MS purifica-
tion.

Triazine Reaction.48 For execution of a single-pot se-
quence, inputs were segregated in order of nucleophilicity.
Thus, component A contains the anilines, 3- and 4-aminobenz-
amidines, component B contains both primary and secondary
amines while component C contains only the more nucleophilic
secondary amines.28 Prior to HPLC-MS purification, the
reconstituted reaction residues were centrifuged to allow for
injection of the supernatants.

Bis-Anilide Reaction.49 For execution of a single-pot
sequence, the 2-substituted-4H-3,1-benzoxazin-4-one interme-
diates were formed by reacting the anthranillic acids with an
excess of the acid chlorides. Subsequent addition of the suitably
protected guanidine-containing amine serves to quench the
excess acid chloride and to ring open the benzoxazinone
intermediates to give the final products.28 Prior to HPLC-MS
purification, random wells were checked to ensure deprotection
was complete.

Screening Protocol. A fluorescence-based assay was
performed by Chromagen, Inc., San Diego, CA, based on
competition of a high-affinity Glu-Pro-Arg peptide substrate
and the synthetic compounds to the thrombin active site. The
assay was carried out in a 96 well plate format with each
column containing a synthetic compound. Internal standard
for the assay involved the use of NAPAP in the place of the
synthetic compound. The control for every plate contained a
10% DMSO stock solution placed in the first two rows and
columns of the plate. To the prepared wells containing 10 µL
of the synthetic compounds, 95 µL of the buffer solution
containing the peptide substrate was added and the fluores-
cence at 405 nm was measured. To these equilibrated wells,
buffered human R-thrombin solution was added. After a short
equilibration, the fluorescence of each well was measured every
5 min for 20 min in order to follow the enzyme kinetics. The
percent inhibition of the synthetic compound was calculated
from the measured fluorescence after correcting for the
measurements made from the control wells.
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